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Resonant surface waves and chaotic phenomena 
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Surface waves in a rectangular container subjected to vertical oscillations are studied. 
Effects of energy dissipation along the lines of Miles (1967) and the effect of surface 
tension are inc1udt:d. Sufficient conditions, for two modes to dominate the motion, 
are given. The anrlysis is along the lines of Miles (1984~)  and Holmes (1986). A 
complete bifurcation analysis is performed, and the modal amplitudes and phases are 
shown to have chaotic behaviour. This result is obtained under assumptions different 
from those of Holines (1986). The conclusions regarding chaotic motions are based 
on a theorem of Silnikov (1970). 

1. Introduction 
The study of su $ace waves in vertically oscillating basins goes back to Faraday 

(1831). More recer.t studies start with Benjamin & Ursell (1954), who studied the 
linearized problem. Study of nonlinear phenomena falls into two categories. In  one, 
it is assumed that only one spatial mode is dominant. This occurs under certain 
hypotheses. For a statement of these hypotheses and for references in this general 
area see Gu, Sethna & Narain (1987). In  the other category, it is assumed that more 
than one spatial modes have motions of significant amplitude. For the main 
contributions, we refer to work by Miles (l976,1984a, b, c, 1985) and Holmes (1986). 
For experimental work see Ciliberto & Gollub (1984, 1985), and for work in the 
presence of symmetry see Meron & Procaccia (1986). Much of this work is associated 
with the possibi1it;r of chaotic motions. 

The work presented here is close to that of Miles (1984~)  and to some extent to 
that of Holmes (1986). Both in Miles (1984~)  and Holmes (1986), wave motions with 
two dominant spatial modes with frequencies that are in internal resonance are 
studied. In  Miles (1984a) the frequency ratio is assumed to be equal to two, while 
in Holmes (1986) a detuning parameter is introduced so that the ratio can be a number 
in a small neighbourhood of two. In  both studies the container is assumed to be 
excited sinusoidall-r in the vertical direction. Both studies are based on a Hamiltonian 
formulation. In  Miles (1984a) the problem is studied under the assumption that the 
nonlinear effects, the parametric excitation, and the effects of dissipation are all small 
and of the same order of magnitude. In  Holmes (1986) it  is mumed that the 
excitation effects cmd dissipation are higher-order quantities when compared with 
the nonlinear effects. 

Our work follows fairly closely the work of Miles (1984~).  We, however, study in 
detail the couplinlg effects of the spatial modes and give conditions under which 
internal resonanceii of the type discussed here can occur. Furthermore, we take into 
account the detuni.2g in the internal resonances, which make it possible for the system 
to have Hopf bifurcations. Moreover, the occurrence of the Hopf bifurcations 



544 X. M .  Gu and P.  R.  Sethna 

introduces a subset in the parameter space in which no stable periodic or quasi- 
periodic motions occur. We show that chaotic phenomena occur in this interval. Our 
results are based on a theorem of Silnikov and are verified by numerical computations. 
We thus show that chaotic behaviour is possible, in contrast to the work of Holmes 
(1986), when the system is not perturbed from a completely integrable Hamiltonian 
system ; furthermore, we show that the amplitudes and phases of the dominant modes 
can have quite general chaotic behaviour as a function of time as compared with the 
special type of chaotic behaviour of motions described in Holmes (1986). 

We conjecture that a more elaborate analysis involving more modes and done at  
a higher approximation may exhibit surface-wave phenomena of very complicated 
nature. Miles (1985), on the other hand shows that, at least in the case of wave motions 
excited by horizontal motions of the basin, chaotic behaviour occurs only with a 
two-mode approximation and, based on some numerical work, he shows that no 
chaotic behaviour is possible at higher-mode approximation. He remarks, however, 
that the chaotic behaviours may be an artifact of the truncation and that ‘the 
anomalous effects of truncation . . . appear to be associated with the confluence of 
internal resonances in the limiting of vanishing dispersion ’. We feel the introduction 
of parameters that disrupt exact tuning would remove this confluence, and this may 
validate our conjecture. 

We also give a discussion of the difficulties associated with an experimental study 
of the type of wave motion studied here. 

2. Problem formulation 
Following closely the discussion by Gu (1986), consider a rigid rectangular 

container containing an inviscid incompressible fluid. The container is subjected to 
vertical motionsf(t) = - A  coswt with respect to a fixed reference frame. We assume 
that the flow is irrotational and, thus, there exists a potential function $(x, t ) ,  where 
x is the position with respect to the container, so that V$ = V, where V is the fluid 
velocity relative to the container, and, due to the incompressibility, $ satisfies 
Laplace’s equation. The origin of a moving Cartesian reference frame is attached to 
the container at the undisturbed free surface of the fluid. The cross-section of the 
container is assumed to be rectangular of sides a and b and the fluid depth is h. The 
gravitational acceleration and the surface tension are denoted by g and 7 respectively. 
The free surface is denoted by z = q(x ,  y ,  t ) .  

Let 1 
A = EbA’, x = bx’, y = by’, z = bz’, t = -t’, 

0 

where E is a small parameter. Dropping the primes for simplicity, we obtain the field 
equations and boundary conditions in dimensionless form as follows. The potential 
function satisfies : 

V 2 $ = 0 ,  i n O < x < a ,  O <  y <  1, - h < z < s q ( x , y , t ) ,  (2.1) 
along with the boundary conditions on the rigid walls: 

I $z = 0 on x = O,a, 

q & = O  o n y = 0 , 1 ,  

$ , = O  onz=-h .  
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The boundary conditions on the free surface, z = q ( x ,  y, t ) ,  take the form 

#t + !##)2 + (G + E L I  cos t )  7 

= Y[(?lzz+rlyv) --$2(rlzz rli+rlyy rli+3rlzzTi +3rlvy rl~+4rlZ rly rlzy)I +O(E3), (2.3) 

#* = @#z rlz + #y r y l  + rlt,  (2-4) 

and from the incompressibility of the fluid, we have the condition 

(2.5) 

3. Asymptotic anillysis 

asymptotic as E+O, of the form 
We assume the tzth-order asymptotic expansion of the solution of (2.1)-(2.5), 

N m  

When E = 0 we h,sve 

pi ;y t )  := cos~ i3 t+e t j ) ,  qi;)(t) = -& atj sin (lutj t + 8,) 9 (3.3) 
a6j 

where 

and at, and O,, are a1 bitrary constants. For i = j = 0, (2.5) yields p$ = 0 and q$ = 0. 
When E + 0, the method of analysis used is an adaptation of the method of 

averaging as given kby Mitropolsky (1965) and as employed by Bajaj & Sethna (1980). 
The solution is assumed to depend on two infinite-dimensional vectors u and 8, the 
time derivative of vhich will be quantities of O(B)  as follows: 

Ptj = [(a+ Y I q j )  .*,I4 atj = 4, tanh k, a, 

N 

Substituting (3.1) into (2.3) and (2.4), taking into account (3.4) and (3.5), equating 
equal powers of E ,  and taking projections, we have (for details see Gu 1986) 
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for terms of order E. In (3.6) and (3.7) the repeated subscripts, except m and n, imply 
summation from zero to infinity. The quantities are complicated expressions, 
as given in the Appendix, and are not zero when the equations of the involved modes 
are spatially coupled with the (m, n)th mode. 

3.1. Coupling phenomena 
The system of equations (3.6), (3.7) and those of higher order can be studied 
under a variety of assumptions on the physical parameters. Qualitatively different 
phenomena occur depending on the coupling between the infinity of equations at each 
approximation. 

An examination of coefficients Gig\mn for u = 1,2 ,3 ,  which determine spatial 
dependence, shows (see Appendix) that for modes with mode numbers (i,j) and ( r ,  s) 
to couple a t  O(s), and therefore to affect the mode with mode numbers (m,n), the 
following conditions have to be satisfied : 

i & r + m  = 0, j f s f n  = 0, (3.8) 
where i, j, r ,  s, n and m are all non-negative integers. In  general, therefore, all modes 
are coupled with all other modes, but not directly, and in a pattern dictated by (3.8). 

In the main body of this study we discuss the case when only two spatial modes, 
in the scaled variables of (2.1)-(2.4), have motions of amplitude O ( @ )  and all other 
modes have motions of amplitude at least of order s. Later we discuss the possibility 
of more complicated cases. 

Suppose the (m, n)th mode is in external subharmonic resonance (,urn, 2 t ) ,  then 
within the restriction of a two-mode analysis we observe that either (i,j) or ( r ,  s) must 
be equal to (m, n) and the other mode must have one of the three mode numbers: 
(2m, 2n), (0,2n) and (2m, 0) ; in the case where neither m nor n is zero, the other mode 
may also have mode number (+, $), if both m and n are even. If m = 0 and n =k 0, 
the other mode must have mode numbers (0,2n) or (p, !jn) for any positive integer 
p, and similarly for the case when m =k 0 and n = 0. 

In  the subsequent analysis we introduce energy dissipation in a manner similar to 
that by Miles (1984a) and Holmes (1986). Due to the presence of this dissipation, 
in order that a mode has sustained oscillation, it must not only satisfy the 
requirements of model coupling according to condition (3.8), but it must also satisfy 
certain conditions on its natural frequency so as to be able to get energy through 
resonance phenomena. There are two distinct cases: the superharmonic case when 
the coupled mode has a frequency almost twice that of the (m,n)th mode, and the 
subharmonic case when h e  coupled mode has a frequency near half that of the 
(m, n)th mode. If neither m nor n is zero, then the former case is possible, only if the 
coupled mode has one of the mode numbers (2m, 2n), (0,2n) and (2m, 0) ; and the latter 
case is possible when m and n are even, and when the coupled mode has mode number 
(+,!jn) and a frequency about half that of the (m,n)th mode. On the other hand, 
if say m = 0, then the former case is also possible even when the other mode has mode 
number (p,!jn) for sufficiently large p. 

4. The basic finite dimensional equations 
Limiting the discussion to the superharmonic case let 

P L n  = (+)2+~g1, 

2 + = 4 +sat,. 
Pmn 
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where at is the external, and at, the internal detuning parameters, respectively. The 
integers (i,j) in (4.1) and (4.2) take values (2m, 2n), (2m, 0) or (0,2n). 

Inserting (4.1) and (4.2) in (3.6) and (3.7), and imposing the condition that the 
latter has periodic solutions when atj and 8 ,  are regarded as constants, we solve for 
Agk and B$&, using the 'Fredholm Alternative' (Hale 1969). Substituting for the 
functions A$& and B$k and in (3.4) and (3.5) we have 

a,, = e[ -amn amn + A m n  amn sin 28,, + rmn aij amn sin (28,, - dtj), 

amnemn = €[ul+Amn COs28mn+rmnatj ~0~(28mn--ij)]amn, 

Utj  = E[-vddmna$j - r$ jakn  sin (28mn-e#j)], 

atjdij = € [ ( 2 ~ , + ~ * j ) a t j + r t j a ~ n  cos(28mn-e~j)I. (4.3) 
where 

where, for given (m, n),  (i,j) may be one of the pairs of integers mentioned above. 
In  (4.3) we have introduced damping as in Miles (1984~) as first-order terms. The 

amplitudes of all the modes other than the two modes under consideration satisfy 
equations of the form 

and thus auv(t)+O as t+m. 
a,, = -du, a,,, 

8 m n  = 81, = 82 ,  

and using an overdot to denote the derivative with respect to t ,  we obtain 

I dl = -da,+a, sin28,+a1a, sin(28,-8,), 

a, 8, = [u + cos 28, + a, cos (28, - e,)] a,, 

u, = -vdda,-a: sin(28,-8,), 

asd2 = (2u+B)a,+a: cos(28,-8,). 

In Cartesian coordinates 

x1 = a, cos el, y1 = -a,  sin 8,, 

x, = a, COB 8,, y, = -a, sin B,, 

we have 

(4.7) 
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Furthermore if Zx = ( 2 x ) f ,  I, = - ( 2 y , ) f ,  Z2 = x2,  a, = - y2 ,  then (4 .8)  can be written in 
Hamiltonian form. If the damping terms are dropped, and /3 = 0 ,  equations (4 .8)  are 
equivalent to that of Miles ( 1 9 8 4 ~ ) .  

Equations (4.8) are in the general category of equations studied by Lorenz (1984). 
Although (4.8) have only a superficial similarity in structure to the now famous 
equations of Lorenz (1963),  we will show later that they have a strong similarity 
in the behaviour of the solutions. 

5. Periodic and quasi-periodic solutions and their bifurcations 

system. The amplitudes of the periodic motions are: 
If a, and Oi (i = 1 , 2 ) ,  are constants, then we have periodic solutions of the original 

(5.1) I U: = 4 2 ~ ~  +/3) - vd d2 f {R- [ d ( 2 ~ + / 3 )  + vd daI2}i, 

a4 
a: = i .  

The ‘response curves’, plots of a, versus a, are given in figure 1,  with /3 = - 1.0 and 
several values of d .  

If R = v%d2+ (2~7+/3)~ and k = a:/a:, then the phase angles can be shown to take 
two values, with a phase difference of 7t, for each solution in (5.1) as follows: 
if -a+ (2a+/3) k2 > 0 ,  

d (  1 + vd k2)  ?j arctan - a + (2a + /3) k2 ’ 

d ( l + v d k 2 )  . 
7t +!j arctan 

- a + ( 2 a + / 3 ) k 2 ’  

if -a+ (2a+/3) k2 < 0, 

if 2 a + P  < 0, 

if 2ui-p > 0, 

An examination 

d (  1 + vd k2)  ?jn - 4 arctan 
-a+(2a+/3)k2’  

- a + ( 2 a + P ) k 2 ’  
o( in - arctan d( l+Vdk2)  . 

Vdd . 8, = 28, - arctan - 
2 a + P ’  

vczd 
2a+/3‘ 

8, = - 7t + 28, - arctan - 

of (5.1) shows that if 

S, = d 2 + a 2 - i  (d  > 0) ,  

s2 = v% d2 + ( 2 a  +/3)2- [ d ( 2 a +  8) + vd daI2, 

s3 = vdd2-a(2a+/3) ,  

then the surfaces s1 = 0,  s2 = 0 and s3 = 0 divide the (a, d,  8) parameter space into 
several open subsets, so that for parameter values in each of these sets, a different 
number of constant solutions occur. 
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FIGURE 1. Response curves (a, w8. v) for /3 = - 1.0 and different dampings: (i) d = 0.1 ; 
(ii) d = 0.6325; (iii) d = 0.8367. -, stable branch; ----, unstable branch. 
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For a fixed ~3 ,  we study a slice of the bifurcation diagram in the (a,d)-plane. 
The curve g1 = 0 for d > 0 is a semicircle. Now s3 = 0 for a fixed p is a hyperbola 
with its centre at ( - $ , O ) ,  apexes at (0,O) and ( - M , O )  and the asymptotes 
d = (2/Vd)+ (a+$9). For p = 0, the hyperbola degenerates to two intersecting 
straight lines d = 6 2,  the two branches of the hyperbola 
intersect the semicircle at A and B coordinates (crA, (1 - ai)+) and (uB, (1 - ui)i), 
where 

u. When 

- / 3 * ( $ + 8 ~ d + 4 ~ $ ) i  
2(2 + v d )  

=A, B = 

When 1/31 > 2 ,  the apex (-$, 0) is outside the semicircle, hence only one branch of 
the hyperbole intersects it. 

Furthermore, it  can then be shown that .s2 = 0 is tangent to the semicircle at A 
and B and that 

The eigenvalues of the zero solution of (4.8) are : 

Since d > 0, the solution cannot have pure imaginary eigenvalues and thus it cannot 
go through a Hopf bifurcation. The solution is stable if cr > (1 - dz)t or u < - ( 1 - dz) i ,  
and unstable if - (1 - d2fi < Q < (1 - dZ)k If cr = f (1 -tiz)+, a zero eigenvalue occurs, 
and an elementary analysis shows that the bifurcations are pitchfork bifurcations on 
s1 = 0, which can be either super- or subcritical. 

If the characteristic equation of the linearized system near a constant solution is 
the following quartic equation 

J4A4+J3A3+JzA2+J1A+Jo = 0 ,  (5.7) 



550 X. M .  CU and P. R. Sethnu 

then, using the Routh-Hurwitz conditions (Routh 1877), the necessary and sufficient 
conditions for the constant solutions to be stable are 

and 

where 

(9 J,  > 0, 

(ii) J1 > 0, 

(iii) J3 J4 > 0, 

(iv) J l ( J , J 3 - J l J 4 ) - J o G  > 0; 

J4 = 1, 

J3 = 2( 1 + vd) d ,  

J ,  = R( 1 +4k2) + 4vd d2,  

J1 = 2Rd[l+2(1+vd)k2], 

J ,  = -44Rk2[~(2r +/3) - ~d de - Rk']. (5.9) 
Conditions (ii) and (iii) are obviously satisfied for any physical system. Substituting 
from (5.1) in (5.9) we can show that 

J,  = f 4Rk2{R- [ d ( 2 ~  +/3) + ~d dr]'}+, (5.10) 

where the plus and minus signs are for the upper and the lower branches of the 
response curves (figure l),  respectively. The upper branch is thus stable if (iv) is also 
satisfied, but the lower branch is always unstable. 

Let 
a2 

s4 v d B - - 2 ( 1 + ~ 3 ~ [ ( ~ 2 + 2 ~ , 3 ) d ~ + ( 2 ~ + / 3 ) ( 4 0 - + / 3 ) ]  ( ,  , ,Z)- R 
+ ~ , [ ( 2 a + , d ) ~ +  v% d2+4d( 1 + vd)]. (5.1 1)  

Then (iv) is equivalent to s4 > 0. If /3/u > -2  or /3/v < -4, i t  is clear that 8, > 0 and 
(iv) is satisfied, and the upper branch is stable. On the other hand, -4  < /3/u < -2  
is a necessary condition for instability of the upper branch by Hopf bifurcation. 

The condition for at least one pair of pure imaginary eigenvalues to occur is s4 = 0. 
Thus to have a Hopf bifurcation, s4 = 0 and, furthermore, the eigenvalues must 
traverse the pure imaginary axis transversally. Substituting for a: with a plus sign 

Then a condition for Hopf bifurcation is that 

a@, d ,  B) = 0. 

(5.12) 

(5.13) 

Numerical computation shows that Hopf bifurcations are possible for 
0 < IBI < 2.67 and d < 0.243. For given values of /3 and d satisfying these inequalities, 
the condition (5.13) gives two values of U, u = rH1 and rH2 with uH1 < rH,, and for 
u near cH1 and rH2, periodic motions are possible. In  figure 2, the zeros of (5.13) are 
plotted for several values ofa, 0 < B < 2.67. Those for -2.67 < /3 < 0 are symmetric 
with a reflection in the u = 0 axis. They appear approximately as semicircles. We 
denote the interior of the semicircle as set IV. 

For each given 1/31 < 2.67, there exists a limiting value of d = d*. If d > d*, then 
no Hopf bifurcation occurs. Values of d* are plotted versus @ in figure 2 as the 
envelope of set IV. 
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FIGURE 2. Bifurcation diagram on (a,d)-plane for different /3 (as indicated). (i) Pitchfork; 
(ii) Saddle-node; (iii) Hopf. The diagram is a reflection in the axis Q = 0 for negative B. 

We remark that if /3 is zero, (iv) always holds for all given d and a; thus Hopf 
bifurcations are impossible. Since /3 represents detuning in internal resonance, this 
means that the linear natural frequencies of the interacting modes must deviate from 
the ratio 2 in ordei that Hopf bifurcations occur. Miles (1984a) shows this non- 
occurrence of Hopf 3ifurcations. 

We now can suminarize the results as follows: In set I, there are three sinks and 
two saddles; in set 31, only one sink; in set 11, two sinks and a saddle; and in set 
IV  three saddles. 

On AJ and BH of the unit semicircle, a pitchfork bifurcation occurs. In  this 
bifurcation, as the parameter pair (a, d )  crosses from region I to region 11, a sink (the 
zero solution) loses ts stability as two saddles and this sink coalesce into a saddle. 
Globally, the total of five equilibria including two saddles and three sinks, become 
two sinks and one addle. 

On AB of the unit semicircle, a pitchfork bifurcation of another type occurs. In  
contrast to the one Etated above, as the parameter pair (a, d )  crosses from region I11 
to region 11, a sink (the zero solution) loses its stability and becomes a saddle and 
two sinks. A local artalysis on the centre manifold shows that if a(2cr+/3)- vdda > 0, 
the pitchfork bifurcation is subcritical and if a(2v+/3) -vddB < 0, the pitchfork 
bifurcation is supercritical. This justifies the above statement. 

As the parameter pair (a, d )  crosses from region I into region I11 through the curve 
AD or BF, the origin remains a sink, and a saddle and a node, and another saddle 
and another node coalesce simultaneously in a double saddle-node bifurcation and 
the only fixed point left is the stable zero solution. All the above statements have 
been verified analytically. 

At  the exceptional bifurcation points A and B,  at which AD and BF are tangent 
to the unit semicircle, the zero solution and non-zero fixed points simultaneously 
undergo degenerate pitchfork bifurcations with saddle-node and pitchfork bifurca- 
tions occurring simultaneously. 

As we go from sets I1 to IV on the boundary of set IV, the two sinks (stable non-zero 
solutions) become nm-hyperbolic with a pair of pure imaginary eigenvalues, and they 
have Hopf bifurcations simultaneously. Using centre manifold theory and averaging 
procedure in a manner similar to that in Sethna & Gu (1985), we are able to tell the 
stabilities of the limit cycles created from the Hopf bifurcations and their approxi- 
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mate radii. For /I = - 1 explicit calculations show that the bifurcation is super- and 
subcritical on the left-hand and right-hand boundaries of set IV, respectively. 

The constant solutions in sets I, I1 and I11 represent periodic solutions. Which of 
the multiple stable solutions will occur depends on basins of attraction of these stable 
solutions in the four-dimensional state space. On the boundary of set IV, the motion 
becomes amplitude modulated at  a very low frequency. The system has complicated 
behaviour for values of Q inside set IV, which behaviour we discuss in the next section. 
Here we merely note that the damping parameter d has to be small for these 
complicated phenomena to occur. 

6. Global bifurcations - Silnikov theorem - routes to chaos 

for values of parameters in set IV. 
In  this section we study complex global bifurcations that lead to chaotic motions 

6.1. General properties 
Consider the Cartesian form (4.8) of the system equations. They have the symmetry 
(q, yl, x2, yz)+ ( -xl, -yl, z2, y2). Hence the fixed points, trajectories, limit cycles, 
attractors, etc., occur in pairs if they are not taken into themselves by the symmetry. 

Following the method of Lorenz (1963), for the three-dimensional equations, it  can 
be shown (Gu 1986) that there exists a hyper-ellipsoid S in R4 on which the vector 
field is directed everywhere inwards. If the interior of S is D, then all trajectories 
entering D remain in D for all t > 0, and thus D must contain at least one attracting 
set. Furthermore, from an examination of (4.8), it is seen that the divergence of the 
flow is equal to - 2(1+ vd) d, which is always negative. The flow is thus contracting 
and the above mentioned attracting set must have zero four-dimensional volume. 

We also note from (4.8) that the two-dimensional subset z1 = y1 = 0 is an invariant 
set. Furthermore, the flow on this subset is globally spiralling into the origin. This 
is because x1 = y1 = 0 means no motion of the mode excited by external resonance 
and thus the motion in the other internally resonant mode represented by (z2,y2) 
decays to zero. 

Our result depends in part on a theorem of Silnikov (1970). The hypotheses of the 
theorem are that the system has a homoclinic orbit (i.e. an orbit that approaches the 
fixed point as t++ co and as t + -  00) at a fixed point and the fixed point has one 
pair of complex conjugate eigenvalues with negative real parts, one negative 
eigenvalue and one positive eigenvalue. Furthermore, the absolute value of the real 
part of the complex eigenvalues are assumed to be smaller than the magnitude of 
the real eigenvalues. Under these assumptions, the system is shown to have a 
countable number of three-dimensional Smale horseshoes, and thus the dynamics on 
the horseshoe is homeomorphic to the Bernoulli shift of n symbols (Lichtenberg & 
Lieberman 1982). The occurrence of the horseshoes is accompanied by and generates 
certain types of behaviour in the solutions of system (4.8). 

We have a flow with contracting volume, and for such flows the creation of 
horseshoes is accompanied by sequences of bifurcations (Yorke & Alligood 1985; 
Gavrilov & Silnikov 1972, 1973). We will show that in our problem there occurs at 
least one sequence of bifurcation, which includes a period-doubling sequence of 
periodic motions that is associated with the horseshoes generated by the Silnikov 
phenomenon. 

The horseshoes themselves can generate different phenomena. They can generate 
very long transients, which appear superficially as chaotic motions, before the orbit 
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asymptotes, as t+  00, to a stable fixed point, a stable periodic orbit or some other 
relatively simple stable invariant set. Such behaviour is called ‘preturbulence ’ 
(Kaplan & Yorke 1979). The existence of the horseshoes can also generate a ‘strange 
attractor’ (Guckenheimer & Holmes 1983), which itself is an invariant set, and the 
solution appears to be chaotic for all time. Both preturbulence and strange-attractor 
behaviour occur in our problem. 

In physical terms, in the case of preturbulence, the amplitudes and phases of the 
two spatial modes show chaotic behaviour for a considerable time before they settle 
to constant values, which represent steady periodic waves. In the case when a strange 
attractor is formed, the amplitudes and phases of the two spatial modes exhibit 
sustained chaotic behaviour. 

The Silnikov theorem proves the occurrence of horseshoes in an open interval in 
the parameter space containing the parameter values at homoclinicity. In  our 
problem, due to some special features, numerical results showing chaotic behaviour 
appear to be in a half-open interval. The sources of this behaviour will be discussed 
later. 

Numerical studies were done with a view to find the location of stable as well as 
unstable periodic orbits, and special methods were used to determine the Floquet 
multipliers of these orbits. For both periodic and chaotic orbits, power-spectrum 
computations using fast Fourier transforms were done and, where appropriate, 
three-dimensional Poincark-mappings of the flow in R4 were taken. 

The numerical work is limited to  a special case when d = 0.1, /? = - 1.0 and 
vd = d, /d ,  = 4 2 .  The parameters are chosen so that Hopf bifurcations are possible 
and so that we have a comparatively wide interval of external detuning parameter 
in which global bifurcations occur. Following Miles (1967), it is not difficult to show 
that the value 1/2 is a good approximation for the damping ratio in the case in which 
the (m, n)th mode is coupled with the (2m, 2n)th mode. Hopf bifurcations occur for 
the above value of d and /? at cr = crH1 = 0.292479 and cr = aH2 = 0.470699. The 
former is supercritical. and the latter subcritical. 

All the phenomena described in this section occur in set IV. There are always three 
fixed points, since the condition la1 < (1 -a2)! is satisfied. The origin, labelled 0 
throughout, has its eigenvalues as in (5.6). There is one positive and one negative 
eigenvalue and a pair of complex conjugate eigenvalues with negative real parts. 

The two non-zero fixed points, labelled as A and B throughout, always have two 
pairs of complex conjugate eigenvalues. They are stable when cr < crH1 and cr > gH2. 

They become unstable simultaneously through Hopf bifurcations when a = gH1 and 
a = vH2, with the real parts of one pair of eigenvalues crossing the pure imaginary 
axis. In figure 3 we show the overall bifurcation diagram for the three sequences of 
global bifurcations. 

6.2. Route to chaos starting from the supercritical Hopf bifurcation, sequence 1 
Supercritical Hopf bifurcation (B1.l in figure 3) occurs at a = nH1 = 0.292479 and 
two stable limit cycles occur at fixed points A and B respectively. They are symmetric 
in the sense discussed above and will be referred to as periodic orbits A and B. The 
sizes of these orbits increase aa cr is increased to a = 0.323076. 

A t  a = 0.323076 one Floquet multiplier of each periodic orbit A and B leaves the 
unit circle at - 1 and period-doubling bifurcations occur. A period-doubling sequence 
is then established (Bl.2.1-1.2.00). If we denote the period at the point of the f i s t  
period doubling as T, then in figure 4 we show projections on the (xl, z2) coordinate 
planes of the periodic motion of period 4T, designated A4 in figure 3, since i t  is in 
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Periodic orbits 

Bl.1, u = UH, A- - - - - - - Sup. Hopf 

FIGURE 3. Global bifurcations to chaotic motions for /l= - 1 .O and d = 0.1. 
-, stable orbits; ----, unstable orbits. 

the part of the space dominated by A. By using the universal constant of Feigenbaum 
(1978), we predict that the period-doubling sequence terminates in chaotic motions 
at B = aF = 0.323 765. We present in figure 5 (a)  the projection of the chaotic motion, 
when B = 0.323800, again around A, on the same coordinate planes. Also given in 
figure 5(b) is the power spectrum of the motion. A similar sequence of bifurcations 
occurs around the fixed point B. 

With a small further increment of a to the value a = 0.32400, the separate chaotic 
motions around A and B merge in a global bifurcation (B1.3) as shown in figure 6. 

Bifurcation sequences 2 and 3, discussed below, approach chaotic behaviour with 
cr increasing and decreasing respectively. It is suspected that these sequences are 
related to the occurrence of a homoclinic orbit a t  B = rHL = 0.495531 6. 

6.3. Route to chaos starting from a saddle-node bifurcation, sequence 2 
At B = 0.323640 a saddle-node bifurcation (B2.1) of global periodic orbits occurs. 
Of the two orbits the stable one is shown in projections on (q, y,)-coordinate plane 
in figure 7. We note that the orbit is large enough t o  encompass portions of the space 
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FIQTJRE 4. Stable periodic orbit A4 at u = 0.323700. 

dominated by both fixed points A and B and for this reason it is indicated as 
AB in figure 3. We note, furthermore, that the value of u = 0.32364 overlaps the 
values of u for the bifurcation sequence 1, and thus, this bifurcation occurs 
simultaneously with the other bifurcations, that occur closer to A and B, labelled 
A2, A4, ..., B2, B4, ..., etc. The large stable periodic orbit AB grows in size with u 
until u = 0.384000, at which value a symmetry-breaking bifurcation (B2.2) occurs. 
This is a pitchfork bifurcation and occurs when one of the Floquet multipliers of the 
periodic orbit AB passes through + 1. This bifurcation leads to two stable asymmetric 
periodic orbits labelled AB and BA respectively in figure 3. Each of these asymmetric 
periodic orbits now begins other period-doubling sequences (AB)2, (BA)2, (AB)4, .. ., 
with the Floquet multiplier going through - 1 each time. They are labelled B2.3.1. 
and 232.3.2, ..., in figure 3. Stable periodic orbits of period T, 2T, 4T and 8T (not the 
T mentioned earlier) were observed at cr = 0.385980,0.386001,0.386200,0.386230, 
respectively. In  figure 8 we show the orbit (BA)4. The computed value of the 
Feigenbaum ratios S, is quite close to the universal constant S = 0.466920 and the 
accumulation point for chaotic motion for one-sided chaos (B2.3.m) is estimated to 
be u = 0.386237, by using u = 0.385995 as the starting value and using the above 
universal constant. In figure 9 we show asymmetric chaotic behaviour of the solution 
at u = 0.386390. We note that a similar chaotic motion coexists at this value of cr. 
A further increase in u leads to another merging a t  u = 0.386395 (B2.4) when the 
two asymmetric chaotic motions collide. We show this motion in figure 10. 

We note that none of the equilibrium points 0, A or B are stable when the 
above-mentioned chaotic motion occurs. In order to understand the nature of the 
phenomena better, we have taken a three-dimensional Poincar6 section at yl very 
close to zero (yl = The resulting map is shown in figure 11. We note that 
x1 = y1 = 0 is an invariant set and there are no points on x1 = 0. The map appears 
to be in two parts which tangent the x1 = y1 = 0 subspace. Each part, however, is 
not separately invariant, the solution freely going from one part to the other and thus 
there is a true merging of the two attractions. 
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FIGURE 5. (a) One-sided chaotic motion at u = 0.323800. 
( b )  Power spectrum of chaotic motion at u = 0.323800. 

6.4. Route to chaos starting with a homoclinic orbit-&lnikov phenomena, sequence 3 
There is strong evidence of a homoclinic orbit for 0.495531 56 < cr < 0.495531 64. We 
recall that for cr taking these values the origin has a one-dimensional unstable 
manifold and a three-dimensional stable manifold, while both A and B are stable fixed 
points. Numerical integrations were done with initial conditions as close as possible 
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FIQURE 6. Chaotic motion at Q = 0.324000. 

0.8 

0.4 

y1 0 

-0.4 

-0.8 

-0.8 -0.4 0 0.4 0.8 
X1 

FIQVRE 7. Stable symmetric periodic orbit AB at Q = 0.323600. 

to the origin and on the eigenvector corresponding to the positive eigenvalue, i.e. on 
the unstable manifold. The solution gives an approximation to the one-dimensional 
global unstable manifold of the origin. When a = 0.495 531 64 the orbit tends to stay 
in the ‘same’ subspace, say the one dominated by A, and tends to  return to points 
very close to 0 (see figure 12a) before it goes to A for large t .  If a = 0.49553156, on 
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FIQURE 8. Stable asymmetric periodic (EA)4 at u = 0.380200. 
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FIQURE 9. One-sided chaotic motion at u = 0.380390. 

the other hand, the trajectory with the same initial conditions again returns very close 
to the origin (see figure 12b) but then tends to the subspace dominated by B, and 
if observed for long enough time, would go to B as t+ 00. Thus, for some critical value 
u = uHL in between these values, we expect a homoclinic orbit and a homoclinic 
bifurcation (B3.1). Furthermore, there is additional evidence based on computer 
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FIGURE 11. Projection on (zl, z,)-plane of the t.hree-dimensional map at u = 0.386390. 

simulations that the unstable periodic orbits generated by the subharmonic Hopf 
bifurcations at cr = crH2 at both A and B, grow as cr is increased from cr = nH2 and 
eventually touch the origin and become the homoclinic orbit discussed above. 

For values of cr (crC2, nHL) where crc2 w 0.4716, orbits starting near the origin have 
chaotic transients before they eventually go to the fixed point in the subspace 
opposite to the direction of the initial conditions, the transients becoming very long 
when cr approaches crc2 from above. This implies that Smale horseshoes have been 
created in the homoclinic bifurcation and preturbulence phenomena are occurring. 



560 X. M .  Gu and P.  R. Sethnu 

0.4 

0 

-0.4 

X2 

-0.8 

- 1.2 

-1.6 

I I 1 i i i i i i 

* A  

I I I 1 1 1 1 1 1 

0 0.1 0.2 0.3 0.4 
X1 

0.4 I I I 1 1 1 1 1 1 

(b) 

0 
0 

-0.4 

XP 

-0.8 

-1.2 t 
- 1.6 

-0.4 -0.2 0 0.2 0.4 0.6 
X1 

FIGURE 12. (a) Unstable manifold of the origin at u = 0.495531 64. 
(a) Unstable manifold of the origin at u = 0.49553156. 

For crHe < c < uCe, numerical integrations show that orbits starting near the 
origin no longer tend to A or B as t+ 00, even though A and B are stable. To 
understand this behaviour, a study of the unstable periodic orbits at the subcritical 
Hopf bifurcations at A and B was made. Of the four Floquet multipliers for each 
periodic orbit, one multiplier is one, two multipliers have moduli less than one, and 
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FIGURE 13. Three-dimensional map at Q = 0.471000. 

one multiplier has modulus greater than one. Thus, each of the unstable periodic 
orbits, which are very close to A and B, has a three-dimensional stable manifold, 
which apparently effectively separate the basin of attraction of the fixed points from 
that of the strange invariant set and a strange attractor is formed. 

To confirm the above conjecture, a three-dimensional map on a Poincar6 section 
on the hyperplane, x2 = xZA = xZB,  where x2A and x2B are the x,-coordinates of A 
and B respectively, was taken. The fixed points A and B, of course, appear as 
fixed points on this Poincak section. For B in the preturbulence range, 
uc2 = 0.4715 < u < 0.4965, A and B lie in the invariant set, and as u approaches 
uH2 from above, points A and B move to the edge of the strange invariant sets, and 
for B = crc2 they leave the set, figure 13. Such a global change sometimes is called 
a crisis (Grebogi, Ott & Yorke 1983). 

We note for B slightly larger than the value of uHL, at which homoclinic phenomena 
occur, no chaotic phenomena are observed while the theorem of gilnikov assures the 
existence of a horseshoe in an open interval around uHL. There are two explanations 
for this. One is due to the fact that the imaginary part of the complex eigenvalues 
takes a very small value when B = BHL. Glendenning & Sparrow (1984) remark that 
when this happens the effects of the horseshoes are hard to detect with numerical 
techniques for parameter values on one side of the critical value of the parameter. 

There is another explanation of the apparent asymmetry. A research effort has 
been initiated to study the four-dimensional gilnikov phenomena in greater detail 
employing the procedures of Glendenning & Sparrow (1984). Preliminary investiga- 
tion shows that, in the case of four dimensions, the value of the fourth real eigenvalue 
plays an important role. Under the gilnikov restrictions on the eigenvalues, the 
additional real negative eigenvalue introduces an asymmetry in the following sense. 
If u = BHL is the value of u at homoclinicity, then although the horseshoe is present 
for u in an open interval containing uHL, i.e. u( -el +BHL, uHL+E~) ,  el > 0, e, > 0,  
the value of e2 -4 el, and thus computer calculations may not show chaotic phenomena 
for t~ > cHL. 
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7. Difficulties of experimental confirmation 
Efforts were made with equipment similar to that used by Virnig, Berman & 

Sethna (1987) to check the chaotic phenomena predicted by the theory. The efforts 
were unsuccessful, primarily due to the effect of energy dissipation. In order to satisfy 
all the requirements of space and dynamic coupling for a fluid with relatively small 
surface tension, the fluid depth required is quite small and for shallow water waves 
the dissipation of energy due to boundary effects appears to discourage the 
phenomena. 

An alternate formulation of the problem would, we think, lead to experimental 
verification of the theory, but this has not been done due to lack of appropriate 
equipment. A careful examination of the equations shows that equations of identical 
structure, but with different values of dimensionless parameters, are obtained when 
one studies the motion of the interface layer between two immiscible fluids of different 
densities enclosed in a rectangular box. If the densities of the fluids are not very 
different, the surface-tension effects on the interface become dominant compared to 
the gravity effect and it is possible to have wave motions of the type discussed here 
with both fluids having fairly large depths. The difficulty of the experiment arises 
from the fact that the container needs to be given a fairly large vertical motion to 
excite the waves, because it is the difference in the densities that generate the 
phenomenon. In Gu et al. (1987) and Virnig et al. (1987), a theory based on one-mode 
analysis has been verified experimentally. Since the analysis here is based on 
assumptions that are very similar to those in these references, it should be possible 
to verify experimentally the theory for waves at the interface of two fluids. 

8. Remark 
We have described a system that, at least in theory, will show chaotic behaviour 

for two of its spatial modes. The question arises as to whether the analysis can be 
generalized so that the surface waves would appear to have more complex behaviour. 
It appears that the several requirements that lead to chaotic behaviour are likely to 
be satisfied more easily in a more elaborate analysis involving several modes doing 
large motions. A study of the diaphantine equations (3.8) for several modes shows 
that many combinations of modes will satisfy these equations. Furthermore, the 
additional requirements of resonant coupling between modal frequencies would 
impose conditions on sum and difference of several modal frequencies and would, in 
general, be more easily satisfied without forcing the requirement of shallow fluid 
depth. The Rilnikov theory itself is valid in higher dimensions and, in general, the 
higher dimensional problems will have more parameters, and there would be a greater 
probability of finding a combination of these parameters that will satisfy the dual 
requirements of homoclinicity and conditions on the eigenvalues. In  view of all 
this, it appears likely that a more elaborate analysis would show more complex 
phenomena. 

This work was supported by Grant NSF-MEA8310966. The authors wish to  
acknowledge the help of Mr John Vernig in connection with some experiments related 
to this work. 
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Appendix. Definitions and calculations of coupling coefficients 

set : 
It can be shown that the eigenfunctions evaluated at the free surface are a complete 

iZX 
S, = cos- a cosjxy ( i , j  = 0,1,2, ...), (A 1 )  

The inner product of any two elements of (A 2) is defined as 

where So, and So, are the Kronecker deltas, and a direct result from (A 2) is 

<S+j, Sr,> = 858, (A 3) 

where S,, and S5a are the Kronecker deltas. 
Listed below are the definitions of the coupling coefficients : 

Q#Tn = ara<StjSra,  S m n > .  

In  the special cases when (i, j) is either (2m, 2n), (2m, 0) ,  (0,2n) or (0,O) the coupling 
coefficients take the special forms: 

' k f i i n  = -t(nn)2 ' 0 ,  'am( '2nf' 
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In  case of (i,j) = (2m, 2n), the expressions of r,, and f, in (4.4) and (4.5) can be 
reduced to 

r,, = &K,,(3-tanh2Kmn h)/tanh K,, h*280m+80n, 
r 

mn 
1 + tanh2 K,, h * 

r. = 
a3 
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